T60PLUS V3.0 User Manual

1. Product Overview

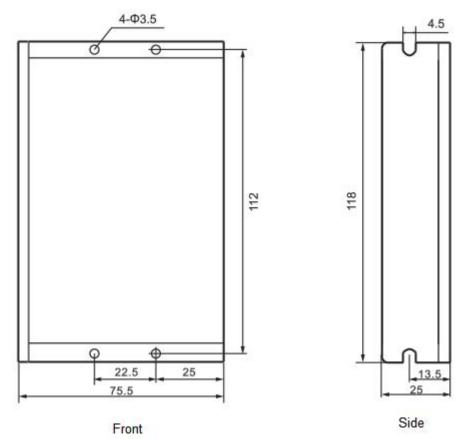
Stepper servo is a stepper servo scheme with high-speed, high-torque, high-precision, low vibration, low-heat and no step loss, which is based on the ordinary open-loop stepper motor and combined with position feedback and servo algorithm. T series stepper servo drive is designed by using Field Oriented Control (FOC) and vector weakening control algorithm in servo drive, which has all-round performance beyond ordinary stepper.

- Built-in PID parameter adjustment function, so that the motor can better meet the application of different types of loads.
- The built-in field weakening control algorithm weakens the magnetic field characteristics of the motor at high speed and maintains the power.
- Built-in current vector control function, so that the motor has servo current characteristics and low heat generation.
- Built-in micro-step instruction algorithm to keep the motor stable and low vibration when running at various speeds.
- Built-in encoder feedback with 4000 pulse resolution improves positioning accuracy without losing steps.

In short, the servo control scheme combined with the characteristics of the stepper motor enables the T series stepper servo drive to better exert the performance of the stepper motor, can replace the servo application of the same power, and is a new choice for the best cost-effective automation equipment.

T60PLUS V3.0 drive can set subdivision and other parameters through DIP switch and debugging software. It has protection functions such as voltage, current and position. It adds alarm output interface, and its input and output signals adopt photoelectric isolation.

Power supply	18~48VDC
Control precision	4000 Pulse/r
Pulse mode	Direction&pulse, CW/CCW double pulse, A/B quadrature pulse
Current control	Servo vector control algorithm
Subdivision setting	DIP switch setting, 15 options (or debugging software setting)
Speed range	Conventional 1200~1500rpm, up to 4000rpm
Resonance suppression	Automatic calculation of resonance point to suppress mid-frequency vibration
PID parameter adjustment	Debugging software to adjust motor PID characteristics
Pulse filter	2MHz digital signal filter
Alarm output	Alarm output for overcurrent, overvoltage, position error, etc.


We hope that our excellent performance products can help you complete the motion control project excellently. Please read this technical manual before using this product.

2. Application Environment & Installation

2.1. Application Environment Requirements

Item	T60PLUS V3.0		
Installation environment	Avoid dust, oil, corrosive environment		
Vibration	0.5G (4.9m/s2) Max		
Operating temperature / humidity	$0^\circ \text{C} \sim 45^\circ \text{C}$ / below 90%RH (no condensation)		
Storage and transportation temperature	-10 °C ~ 70 °C		
Cooling method	Natural cooling / keep away from heat source		
Waterproof class	IP54		

2.2. Installation Dimension

3. Drive Interface & Connection

3.1. Interface Function Description

Function	Grade	Definition	Remarks	
	V+	Input to the positive pole of the DC power supply		
Power supply	V-	Input to the negative pole of the DC power supply	DC 18~48V	
	B-	Negative terminal of phase B winding	Black	
	B+	Positive terminal of phase B winding	Green	
Motor	A-	Negative terminal of phase A winding	Blue	
	A+	Positive terminal of phase A winding	Red	
	GND	Encoder working power 5V ground terminal	Blue	
	VCC	Encoder working power 5V positive	Red	
	EA-	Negative terminal of encoder phase A	White	
	EA+	Positive terminal of encoder phase A	Brown	
Encoder	EB-	Negative terminal of encoder phase B	Yellow	
	EB+	Positive terminal of encoder phase B	Green	
	EZ-	Negative terminal of encoder phase Z	Black	
	EZ+	Positive terminal of encoder phase Z	Grey	
	PUL+		When used for 5V control	
	PUL-	Pulse input interface	signal.	
	DIR+		For 24V control signal, 24V is	
	DIR-		connected to COM+, pulse	
		Direction input interface	and direction are connected	
			to PUL-, DIR-	
	ENA+		24V level, the motor can be	
	ENA-		enabled when it is not	
Control size of		Enable control interface	connected by default, when it	
Control signal		is connected to 0V, th		
			will turn off the output	
	REST	Reserve	Reserve	
	COM+	Control signal 24V common	Control signal 24V common	
	ALM	Alarm output interface	Ontoopuplar isolation	
	PEND	In position output	Optocoupler isolation, open collector output	
	BRK	Brake control signal output		
	Z-	Encoder Z signal single-ended output		
COM-		Output common negative	Control signal 0V common	

3.2. Power supply

The power supply of the drive is DC power, and the input voltage range is between 18V~ 48V.

• Note: Do not mistakenly connect the power supply to the NC pin, and do not reversely connect the polarity of the input power!!!

Power selection reference:

Voltage:

The stepper motor has the characteristic of torque decreasing as the motor speed increases, and the voltage of the input power supply will affect the declining amplitude of the motor torque at high speed. Increasing the voltage of the input power supply appropriately can increase the output torque of the motor at high speed.

Stepper servos have higher revolution speed and torque output than ordinary steppers. Therefore, if the better high-speed performance is wanted, the power supply voltage of the drive is required to increase.

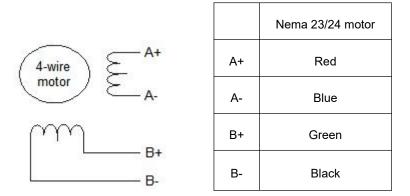
Current:

The work of the drive is to convert the input power supply with high voltage and low current to the low voltage and high current at both terminals of the motor winding. In actual application, the appropriate power supply is selected according to the motor mode and the torque of the load.

The effects of regeneration voltage:

When the stepper motor is working, it also keeps the characteristics of the generator. At deceleration, the kinetic energy accumulated by the load is converted into electric energy, which will be superimposed on the drive circuit and the input power. In application, attention should be paid to the setting of acceleration and deceleration time to prevent the protection of the drive or power supply.

When the drive is powered off, similarly, the drive LED indicator will be on if the load is increased to allow the motor to move

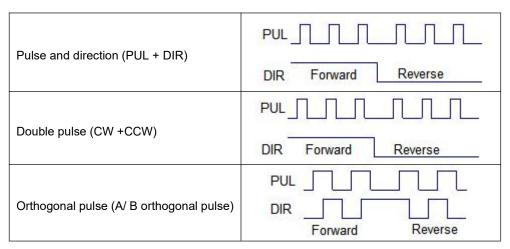

3.3. Encoder Connection

The T60PLIUS V3.0 encoder is A/B differential output, which is connected in the corresponding order when used.

EB+	EB-	EA+	EA-	VCC	GND
Green	Yellow	Brown	White	Red	Blue

Rtelligent also provides a certain length of special cables for encoders. Please purchase the extension cables of different lengths according to the installation needs.

3.4. Motor Connection


The matching motor of the T60PLUS drive is the corresponding T series stepper servo motor, and its corresponding motor connection order is fixed and unique.

3.5. Control Signal Connection

3.5.1. PUL, DIR Port: Connection for Pulse Command

The signal interface of standard T series drive is pulse-shaped, and the T60PLUS V3.0 can receive three types of pulse command signals.

The upper controller can be the pulse signal generating device, such as PLC, MCU, control card and controller.

3.5.2. ENA Port: Enable/Disable

When the default optocoupler is off, the drive outputs the current to the motor. When the internal optocoupler is on, the drive will cut off the current of each phase of the motor so that the motor is in a free state, and the stepper pulse can not be responded.

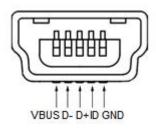
When the motor is in the wrong state, the port enables automatic disconnection. The level logic of the enable signal can be set to the opposite.

3.5.3. ALM Port: Alarm Output

The ALM port is used to output the drive operating status to the external control circuit. ALM outputs different optocoupler levels respectively when the drive is in wrong state and normal operation state.

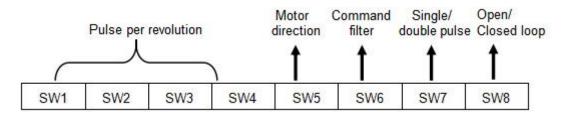
3.5.4. PEND: In Position Output

The PEND port is used to indicate whether the motor is within the set accuracy.


3.5.5. BRK Port: Brake Signal

Open collector output, control relay, and then control brake.

3.5.6. Z Signal Output


The encoder Z signal is photoelectrically isolated and output by the collector.

3.5.7. USB Serial Port

The USB is a Mini-USB connection port, and a USB drive needs to be installed.

4. DIP Switch & Operation Parameter Setting

4.1. Pulse per Revolution Setting

Pulse/rev	SW1	SW2	SW3	SW4	Remarks
3600	on	on	on	on	
800	off	on	on	on	
1600	on	off	on	on	
3200	off	off	on	on	
6400	on	on	off	on	
12800	off	on	off	on	
25600	on	off	off	on	The DIP switch is turned to the 3600
51200	off	off	off	on	state and the debugging software can
1000	on	on	on	off	freely change other micro-stepping level
2000	off	on	on	off	number
4000	on	off	on	off	
5000	off	off	on	off	
8000	on	on	off	off	
10000	off	on	off	off	
20000	on	off	off	off	
40000	off	off	off	off	

DIP SW1, SW2, SW3, SW4 are used to set the required number of pulses per revolution of the motor.

Motor speed = command pulse frequency / pulse per revolution

Motor stroke = number of command pulses / pulse per revolution

4.2. Motor Direction Selection

DIP SW5 is used to set the running direction of the motor under the initial pulse.

The "off" means that the motor direction is counterclockwise when inputting the initial pulse;

The "on" means that the motor direction is clockwise when inputting the initial pulse.

• The initial pulse is the testing pulse used when developing the drive software; Please refer to the actual running direction of the motor.

4.3. Pulse Filter Function Selection

DIP SW6 is used to set the pulse filter function of drive.

The "off" means the pulse filter function is off;

The "on" means the pulse filter function is on.

- The pulse filter function is the filter action by the drive upon the input commands. When the filter function is on, the drive will smoothen the input pulse command to make the acceleration and deceleration of motor softer, but this will also cause certain delay of the pulse command.
- Filter time setting: The default time of filtering function is 6.4ms, and the software can change the time below the 25.6ms.

4.4. Pulse Mode Selection

DIP SW7 is used to set the drive pulse command mode.

The "off" means pulse + direction (single pulse) mode;

The "on" means double pulse mode.

When you need to set the drive pulse mode to A/B quadrature pulse mode, you need to set the pulse mode check function to A/B quadrature pulse mode in the debugging software and set SW7 to on.

4.5. Open/closed Loop Selection

DIP SW8 is used to set the control mode of the drive.

The "off" means the normal closed-loop mode of the input;

The "on" means that the input drive works in open-loop mode and can be used to test the motor.

 The above parameters are set for the DIP switch. For other parameters, please refer to application Instructions of debugging software

5. Drive Working Status LED Indication

LED status	Drive status
Green indicator is on for long time	Drive not enabled
Green indicator is flickering	Drive working normally
1 Green, 1 Red	Drive overcurrent
1 Green, 2 Red	Drive input power overvoltage
1 Green, 3 Red	The internal voltage of the drive is wrong
1 Green, 4 Red	Tracking error exceeds limits
1 Green, 5 Red	Encoder phase error

6. Common Problems & Countermeasures

Phenomenon	Possible situation	Solution	
	The power light does not light up	Check the power supply circuit, normal power supply	
	The motor locks the shaft but does not	The pulse signal is weak, and the signal current is	
	rotate	increased to 7-16mA	
The motor does	Speed is too small	Choose the right segment	
not rotate	Drive is protected	Eliminate the alarm and power on again	
	Enable signal problem	Pull the enable signal high or not connect	
	Command pulse is wrong	Check whether the upper computer has pulse output	
Maria dina dia afi	The motor turns in the opposite direction	Adjust DIP switch SW5	
Wrong direction of	There is an open circuit in the motor wire	Check if the connection is bad	
motor	The motor has only one direction	Wrong pulse mode or damaged DIR port	
	Wrong connection of motor wire	Check motor wiring	
The alarm	Wrong connection of motor encoder wire	Check the encoder line sequence	
indicator is on	The voltage is too high or too low	Check power	
	Signal is interfered	Eliminate interference, reliable grounding	
		Check the host computer instructions to ensure	
Position or speed	Command input error	correct output	
error	Wrong setting of pulse per revolution	Check the status of the DIP switch and connect it	
	Encoder signal is abnormal	Replace the motor, contact the manufacturer	
	Short circuit between terminals	Check power supply polarity or external short circuit	
Drive terminal	T	Check whether excessive solder is added to the	
burned out	Too much internal resistance between	connection between the wire and the wire to form a	
	terminals	tin mass	
	Acceleration and deceleration time is too	Reduce the command acceleration or increase the	
	short	filter parameters of the drive	
Motor reported out	Motor torque is too small	Choose high torque motor	
of tolerance	The lead is too beauty	Check the load weight and quality, adjust the	
	The load is too heavy	mechanical structure	
	Power supply current is too small	Replace with a suitable power supply	